Language redundancy effects on f0: A preliminary controlled study

Cong Zhang1Catherine Lai2Ricardo Napoleão de Souza2Alice Turk2Tina Bögel31Newcastle University, UK2University of Edinburgh, UK3University of Konstanz, Germany

Aim	Methods	Predictions
To investigate the relationship between measures of language redundancy • lexical frequency, bigram frequency and f0 markers of prosodic structure • prosodic prominence, boundary tone	 Recordings: 11 speakers produced 14 sets of quadruplets, originally designed for a duration study Each utterance contains a Verb-Adjective-Noun (V-A-N) sequence. Each quadruplet contains four different combinations of <u>frequent(f)</u> and <u>infrequent(i)</u> Vs and Ns. E.g.: 	 Pitch accent: H*: higher F0 when infrequent !H*: prediction is less clear Boundary tones: Lower L% boundary tones when infrequent Pitch accent and boundary tone effects may be
Introduction	ff : Whatever you make _f clean fields _f should be a priority	difficult to dissociate when on the same

Lindblom (1990) proposed that **more predictable elements** (e.g. segments, syllables, words) require **less "explicit signal information"** for successful recognition than less predictable elements.

The Smooth Signal Redundancy Hypothesis (SSRH, Aylett & Turk 2004; Turk 2010) proposes that prosodic structure is used to control the relative acoustic salience of words based on their language redundancy (= relative predictability).

Hypothesis

- Words with lower language redundancy (less predictable) are more likely to be associated with greater phrasal prominence, and stronger boundaries.
 - Findings for **duration** are consistent with this hypothesis (e.g. Bell et al., 2009), but the SSRH's **prosodic interface** view makes predictions that <u>*all* correlates of prosodic</u> structure, including F0 should be affected by relative predictability.

- Whatever you make f clean fields is should be a priority
- if: Whatever you rake_i clean fields_f should be a priority
- ii: Whatever you rake_i clean fiefs_i should be a priority
- Each utterance can have two readings, VA%N or V%AN. We only analysed V%AN since it accounts for 86% of the dataset.

• F0 measures:

- Sonorant interval for V or N
- Divided into 3 equal portions for analyses:
 - initial third an indication of pitch accent
 - second third a transitional section
 - final third an indication of boundary tone

Frequency measures:

Lexical frequency: The verbs and the nouns were either frequent (f) or infrequent (i)

 $V_{f} > 2000$ $V_{i} < 200$ $N_{i} < 100$

from WebCelex's Cobuild Corpus

Bigram frequency: Freq_(VA) vs Freq_(AN)

syllable. Boundary tone effects are most likely on final 3rd

Verb

Results:

- Lower V_freq \rightarrow lower *initial* 3rd of f0 of V
- Lower V_freq \rightarrow lower *final* 3rd of f0 of V
 - Consistent with the SSRH prediction of a stronger prosodic boundary, i.e. an even lower boundary tone, after a less frequent word

Discussion:

Previous studies

- Turnbull (2017) found that contextual plausibility (i.e., a measure of language redundancy) affected f0 values as predicted by the SSRH for spontaneous AmE: lower redundancy yielded overall higher f0 values.
- However, discourse mention and focus status showed less clear results, suggesting that redundancy might affect f0 differently from duration.
- Tang & Shaw (2021) found effects of forward

Results

• Tune composition:

Most used tune (30% of the dataset) [Fig. 1]: V [!H* + H-L%] + A [H*] + N [!H*] + H-L%

• Pitch accents:

	!H*	H*
V	56.8%	43.2%
Ν	56.4%	43.6%

Note !H* and H* are sometimes difficult to distinguish due to the flat contours

Boundary tones:

V	falling boundary tone !H-L%	flat boundary tone H-L%
	57.8%	42.2%
	falling boundary tone !H-L%	no boundary tone

 Short target words in this dataset may have caused V3 (L%) to bring down V1

Noun

Results[:]

Lower N_freq → higher *initial 3rd* of f0 of N
 Suggests an increase in f0 of !H* and H* when N is infrequent

Comparison of V and N:

 In contrast to V1, N1 shows higher f0 on the initial 3rd when infrequent, possibly because of

and backward predictability on f0 in Mandarin.

fewer L% boundary tones on N

Conclusions

- Preliminary observations regarding the relationship between frequency measures and f0 in controlled English data
- Some support for the Smooth Signal Redundancy Hypothesis: language redundancy affects f0 in some ways
- Results would be easier to interpret on longer words

Acknowledgement	Selected References	Contact
We gratefully acknowledge funding from AHRC- DFG Grant No. AH/W010801/1, to A. Turk, T. Bögel and C. Lai.	 Aylett, M. and Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech. <i>Language and Speech 47(1):</i> 31-56. Aylett, M. and Turk, A. (2006) Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei," <i>The Journal of the Acoustical Society of America</i> 119(5): 3048-3058. Bell, A., et al. (2009). "Predictability effects on durations of content and function words in conversational English." <i>Journal of Memory and Language</i> 60: 92-111. Lindblom, B. (1990). Explaining Phonetic Variation: A Sketch of the H&H Theory. <i>Speech Production and Speech Modelling</i>. W. J. Hardcastle and A. Marchal. Dordrecht, Kluwer Academic Publishers. 55: 403-439. Tang, K. and Shaw, J. A. (2021). "Prosody leaks into the memories of words." <i>Cognition</i> 210: 104601. Turnbull, R. (2017). "The role of predictability in intonational variability," <i>Language and Speech</i> 60(1): 123-153. Bögel, T. and Turk, A. (2019). Frequency effects and prosodic boundary strength. <i>ICPhS2019</i>: 1014-1018. 	Scan to download pdf